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Abstract

California’s increasingly frequent and intense drought is a pressing problem for
the state’s agriculture and the U.S. food supply, as the state is the major producer
of many agricultural products. Particularly, California supplies more than half of all
fruit and vegetables in the country. This paper examines the severity of the problem
by estimating the impacts of the drought on California’s fresh fruit and vegetable
production. We estimate panel data models using comprehensive, county-level agri-
culture, irrigation, and weather data from 2000 to 2019. Our findings indicate that
droughts significantly reduce total output, ranging from 1.2% to 2.2% for each ad-
ditional week of drought. The estimated effect is driven by lower yields and fewer
harvested acres due to the drought. The drought effects also differ among crops,
with thirsty crops and crops with lower economic returns and established insurance
programs being disproportionately affected. Results also show the extent to which
higher irrigation levels mitigate the adverse effects of drought. Our findings provide
insights into the importance of enhancing drought-related risk management and im-
plications for designing cost-effective policies for future adaptation decisions.

Keywords: California drought, fruit and vegetables production, climate change,
adaptation
JEL Codes: Q1, Q15, Q25; Q54

*We thank Terry Hurley, Hikaru Peterson, Chengyan Yue, Marc Bellemare, and Stephen Polasky for
their helpful comments. We also thank seminar audiences at the AAEA Annual Meeting, CAES Annual
Meeting, and Food Group Seminar at the University of Minnesota. The findings and conclusions are
those of the authors and should not be construed to represent any official USDA or U.S. Government
determination or policy.

†Department of Applied Economics University of Minnesota. Email: cai00154@umn.edu.
‡Department of Applied Economics University of Minnesota. Email: mcakir@umn.edu.
§Department of Agricultural and Resource Economics, University of California, Davis. Email:

tbeatty@ucdavis.edu.

https://www.qingyincai.com/JMP_Cai.pdf
mailto:cai00154@umn.edu
mailto:mcakir@umn.edu
mailto:tbeatty@ucdavis.edu


1 Introduction

Global surface temperatures and the frequency and intensity of extreme weather events

have been increasing and are predicted to continue to increase due to climate change.

(IPCC, 2023; Van Der Wiel and Bintanja, 2021). Droughts are no exception and are ex-

pected to become more persistent and extensive in the coming decades (Dai, 2011; Tren-

berth et al., 2014). While droughts have wide-ranging impacts on regional economies

and entire production systems (Fleming-Muñoz, Whitten, and Bonnett, 2023), the agri-

culture sector is especially vulnerable to drought due to its reliance on precipitation

and water supplies. In this paper, we examine the severity of the problem for fruit and

vegetable production—a major agricultural sector that is relatively understudied in the

context of vulnerability to extreme weather events—in California.

The increasing frequency and intensity of droughts and their impacts on agriculture

is particularly concerning for California since it is a major agricultural state and contrib-

utor to the U.S. food supply. The state is the largest producer and exporter of produce

in the United States,1 supplying nearly three-quarters of the nation’s fruits and more

than one-third of its vegetables while exporting about 35% of its total agricultural out-

put internationally.2 At the same time, California is one of the top states experiencing

intense droughts frequently (Pathak et al., 2018).3 These droughts adversely affect farm-

ers’ livelihoods despite advanced technologies and widespread irrigation used in the

state’s agriculture. For instance, Howitt et al. (2015) estimates that the 2015 drought re-

sulted in about $2.7 billion in losses and 21,000 agriculture-related job cuts. Similarly, the

2021 drought is estimated to result in $1.2 billion in losses and around 8,745 job losses

(Medellín-Azuara et al., 2021). Worse still, studies project more frequent and severe

1The terms "produce" and "fruit and vegetables" are used interchangeably throughout the text.
2Data source: California Agricultural Production Statistics. https://www.cdfa.ca.gov/Statistics/. Ac-

cessed on September 5, 2024.
3Figure A1 illustrates the total number of weeks that areas in the United States experienced extreme

or exceptional drought status from 2000 to 2019. California has spent more than two years in extreme
drought or greater.
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droughts in the future (Cvijanovic et al., 2017; Swain et al., 2018). Hence, it is imperative

to have a full understanding of the consequences of droughts on agriculture to guide the

federal and state policies related to drought and future adaptation strategies.

In this article, we examine the impacts of the recent drought on fruit and vegetable

(FV) production in California. We use California county-level panel data from 2000-2019

to estimate the effects of an additional week of drought on FV at various intensity levels.

California experienced two major drought events during the study period: a shorter one

from 2007 to 2009 and a more prolonged, severe drought from 2012 to 2016.4 This allows

us to observe meaningful temporal variation within counties in the sample.

To measure drought severity, we use publicly available vector data from the Califor-

nia Department of Water Resources (DWR) to track farmland use across various fruits

and vegetables, and we use vector data from the U.S. Drought Monitor (USDM) to cap-

ture drought conditions. The USDM provides weekly updates on the entire distribution

of drought severity, ranging from "abnormally dry" to "exceptional drought." We com-

bine these datasets to develop more precise drought metrics that reflect varying drought

intensity levels in agricultural areas specific to each crop within a given county. These

metrics are aggregated annually to capture cumulative drought effects. We view the

intensity of drought levels as a plausibly exogenous treatment. To measure crop pro-

duction, we obtain annual county crop reports from the California County Agricultural

Commissioners, which contain records on total outputs, yield per acre, and harvested

acres of FV.

The combined data allows us to use a multi-level panel fixed-effects model that ex-

ploits spatial and temporal variation in California’s drought conditions and FV produc-

tion. We use the model to examine how changes in the severity and duration of droughts

affect produce production. To identify processes leading to production losses and offer

a complete picture of crop production, we decompose our estimates into two compo-

4Source: California Department of Water Resources. https://water.ca.gov/drought. Accessed on
September 5, 2024.
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nents: yield response, which mainly reflects the physical impact of drought on crops,

and harvested acreage response, which mainly captures growers’ adaptive decisions.

We find robust and statistically significant negative impacts of both low- and high-

intensity drought on FV total outputs. At low-intensity levels, each additional week

of drought reduces fresh produce total output by an average of 1.2%. This reduction

becomes more pronounced at high-intensity levels, with total output declining by 2.2%

for an additional week of drought. Further analysis shows that the total output loss is

due to decreases in both yield per acre and harvested acreage, with the latter playing

a more substantial role. Reduced acreage could be partly driven by growers’ adaptive

response to drought conditions.

Furthermore, we investigate the heterogeneous effects of droughts by crop growth

cycles, water demands, economic returns, and crop insurance coverage. While we find

no clear distinction between the responses of annual and perennial crops, we observe

that crops with higher water demands and lower economic returns are more sensi-

tive to drought. Additionally, crops covered by established insurance programs exhibit

greater vulnerability to drought than those without coverage. Growers can partially mit-

igate negative drought impacts on FV production when certain adaptation options are

available. In particular, we explore the role of irrigation and find that it largely offsets

drought-related declines in the total production of FV.

The results remain consistent across several robustness checks. First, we use fixed

weights for drought measures in our main analysis, which may raise concerns due to

changes in land cover over time. Therefore, as a robustness check, we construct varying

weights for the drought measures and find consistent results. Second, we use alternative

specifications to account for the non-linear relationship between drought and production

outcomes, as well as clustering concerns. Third, we account for potential spillover effects

by incorporating spatial lags in the analysis. Finally, although droughts are plausibly

exogenous to farm production, there are potential threats to causal identification due
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to how USDM measures drought severity. Hence, we also estimate the model using an

instrumental variables approach to address the concerns about the endogeneity of the

drought variables.

This article contributes to the literature in several ways. First, it expands the existing

research on the impacts of extreme weather events on agricultural economic outcomes.

Drought is a complex extreme climate event characterized by multiple climatological

and hydrological parameters (Mishra and Singh, 2010; Mukherjee, Mishra, and Tren-

berth, 2018). However, most studies rely on precipitation and temperature data or single

indices (such as the Palmer Drought Severity Index and the Standardized Precipitation

Index) to measure drought severity (Boubacar, 2012; Ding, Schoengold, and Tadesse,

2009; Riebsame, Changnon, and Karl, 2019; Wheaton et al., 2008). Other studies use

news articles or government publications to track drought conditions (Lesk, Rowhani,

and Ramankutty, 2016), but these sources lack a consistent definition of "drought". In

this study, we rely on the U.S. Drought Monitor, a more comprehensive and recently

developed tool, for assessing drought conditions. Although USDM has been extensively

used by a variety of federal agencies to inform major drought management decisions

(Kuwayama et al., 2019; Svoboda, 2015), there is limited evidence linking USDM drought

data to observed agricultural outcomes.5 By estimating the impacts of droughts, as de-

fined by the USDM, on produce production, we fill the gap in the literature.

Second, this article adds to the understanding of how drought affects agricultural

production by examining not only its impact on yields but also on harvested acreage—an

aspect often overlooked in existing research. Several empirical studies have documented

the adverse effects of drought on crop yields at regional (e.g., Bareille and Chakir, 2024;

Brás et al., 2021; Kuwayama et al., 2019; Lobell et al., 2014; Schmitt et al., 2022; Tack and

Holt, 2016; Zipper, Qiu, and Kucharik, 2016) or global scales (Leng and Hall, 2019; San-

5Two exceptions include: Kuwayama et al. (2019), who examine the impact of drought, as measured
by the USDM, on corn and soybean yields and farm income in the United States, and Sumner, Li, and Shr
(2023), who estimate how USDM-measured drought affects farmers’ decisions on corn and soybean acres
across crop growing cycles.
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tini et al., 2022). However, focusing solely on yields provides an incomplete view of the

production process. Changes in harvested acreage can complicate the interpretation of

yield responses (Iizumi and Ramankutty, 2015).6 Moreover, crop production, alongside

access and utilization, ultimately determines food security, not just yields. Our study

extends the work of Lesk, Rowhani, and Ramankutty (2016) and Sumner, Li, and Shr

(2023), expanding the analysis of acreage response to drought by using granular data

and rigorous econometric analysis.7

Third, this study contributes to the discussion of the impacts of climate change on

produce production. While extensive literature focuses on staple crops like wheat, rice,

corn, and soybeans (e.g., Schlenker and Roberts, 2009, Miao, Khanna, and Huang, 2016;

Cui and Zhong, 2024), much less is known about how climate change and extreme events

affect FV production, a sector that is essential for adequate nutrition and dietary diversity

(Kerr et al., 2018).8 Although studies have predicted the effects of rising temperatures

on fruit (Baldocchi and Wong, 2008; Luedeling, Zhang, and Girvetz, 2009) and vegetable

production (Bisbis, Gruda, and Blanke, 2018; Deschenes and Kolstad, 2011; Lee and

Sumner, 2015), research on the impact of changing precipitation remains limited (Lobell,

Cahill, and Field, 2007; Lobell and Field, 2011). This is not only due to the difficulty in

modeling precipitation at a regional scale (Pierce et al., 2013) but also because available

water for fresh produce depends heavily on infrastructure and policy. Taking a step

further, Xu et al. (2019) project that global extreme droughts have a stronger impact on

vegetation productivity than mild and moderate droughts, but the ex-post estimations

6This has been demonstrated in the context of climate change (Cui, 2020a; Cui, 2020b; Obembe, Hen-
dricks, and Tack, 2021) and ozone stress (Liu and Lu, 2023).

7Lesk, Rowhani, and Ramankutty (2016) use a statistical model to estimate the effects of drought on
cereal production using data aggregated at the country level. Their findings reveal that production losses
result from reductions in both harvested areas and yields. In addition, Sumner, Li, and Shr (2023) examine
how droughts in the U.S. affect corn and soybean acreage at various stages of the crop cycle, including
planned planting, prevented planting, and crop abandonment. Using a two-way fixed effects model, they
show that acreage response contributes to 28% of the total drought impact on corn production and 26%
for soybeans.

8Since 2000, FV production in the United States has declined by 10% and 23.1%, respectively, while
imports have grown significantly, posing challenges to the sustainability of the U.S. domestic industry
(Ribera and Young, 2024).
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of the effects of drought on produce production are still unknown.

Last, this paper contributes to the growing literature on how farmers adapt to climate

change. Previous studies have highlighted the significance of temperature and precip-

itation shocks in driving adaptive behaviors in the agricultural sector (e.g., Burke and

Emerick, 2016; Cui and Xie, 2022; Cui and Zhong, 2024; Miller, Tack, and Bergtold, 2021;

Ortiz-Bobea, 2021). This study builds on the discussion of the role of irrigation in mit-

igating production losses due to climate change (Edwards and Smith, 2018; Schlenker,

Hanemann, and Fisher, 2005; Schlenker, Hanemann, and Fisher, 2007; Smith and Ed-

wards, 2021), particularly by quantifying how irrigation alleviates drought impacts on

produce production. Our findings on the heterogeneity of impacts by economic value of

crops align with previous findings that growers’ behavioral responses are motivated by

the potential for higher revenues (Cui, 2020a). Moreover, our finding of higher drought

impact on crops with insurance programs echoes the argument that existing institutions

may discourage agricultural adaptation to climate change (Cui, 2020a; Libecap, 2011;

Annan and Schlenker, 2015).

The remainder of this paper is structured as follows. Section 2 outlines the back-

ground on drought definition and various measures of drought. Section 3 presents a

conceptual model that motivates our empirical analysis. Section 4 details the data. In

Section 5, we elaborate on the empirical framework used in this study. Section 6 presents

the empirical estimations, with an emphasis on explaining the influence of droughts on

fresh produce production. Section 7 explores the potential adaptation through irrigation.

The last section concludes.
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2 Background

2.1 Drought Definition and Indices

There is no universally accepted definition of drought (Ault, 2020). Broadly, drought can

be considered a climate-related extreme event characterized by a significant reduction

in water supply relative to water demand when compared to historical norms. In most

cases, drought can persist over prolonged periods and is frequently accompanied by

elevated temperatures. Droughts are commonly classified into four types based on their

impact (Mishra and Singh, 2010): meteorological, hydrological, agricultural, and socio-

economic.9 In the rest of our paper, we will focus on agricultural drought.

Drought lacks a standardized definition, leading to the development of various in-

dices tailored to specific research needs. Mishra and Singh (2010) provide a comprehen-

sive review of a range of drought indices, with newer ones added over time (Hao and

AghaKouchak, 2013; Vicente-Serrano, Beguería, and López-Moreno, 2010). These indices

can be grouped into two categories: those that measure moisture supply from precipi-

tation alone (e.g., the standardized precipitation index and the rainfall anomaly index)

and those that estimate the moisture balance based on precipitation, evapotranspiration,

and water storage (e.g., the Palmer drought severity index (PDSI) and the Standardized

Precipitation Evapotranspiration Index (SPEI)). Despite its widespread use, the PDSI has

notable limitations, including its slow response to emerging droughts and its accuracy

depending heavily on the formulation and historical data used for calibration (Mishra

and Singh, 2010; Trenberth et al., 2014). While the SPEI has been developed to address

some of the PDSI’s limitations, it is widely used as a meteorological drought index.10

9Meteorological drought occurs when rainfall is significantly below historical averages over a period.
Hydrological drought refers to a reduction in surface water, reservoir, or groundwater levels relative to
the historical levels of the region. Agricultural drought happens when insufficient moisture affects plant
growth and yields. Socioeconomic drought arises when water shortages disrupt human activities, linking
the effects of the other drought types to broader societal impacts.

10Although several other drought indices are discussed in Mishra and Singh (2010), PDSI and SPEI
have emerged as the most commonly used in recent research.
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2.2 The U.S. Drought Monitor

The U.S. Drought Monitor is a tool that considers multiple environmental factors to

assess and classify drought intensity. The USDM is a national map depicting areas of

the U.S. that are in a drought, produced jointly by the National Drought Mitigation

Center (NDMC), the National Oceanic and Atmospheric Administration (NOAA), and

the USDA every week.11 The USDM is not simply an index but rather a composite

data product that relies on rich indicators, including a suite of objective climate indices,

numerical models, and subjective inputs from a network of experts at the regional and

local levels (Svoboda et al., 2002). It provides cumulative weekly information on the

percentage of land and the number of weeks in different drought categories at various

spatial scales.

The drought intensity is classified in the Drought Monitor into four major categories

–moderate drought (D1), severe drought (D2), extreme drought (D3), and exceptional

drought (D4) – with a fifth category D0 depicting “abnormally dry” conditions. These

drought categories are based on five key objective indicators along with many ancil-

lary indicators.12 The key indicators are the Palmer Drought Severity Index, CPC Soil

Moisture Model Percentiles, U.S. Geological Survey Daily Streamflow Percentiles, Stan-

dardized Precipitation Index, and Objective Drought Indicator Blends.13 Unlike other

drought indices, the USDM also relies on input and verification from experts across var-

ious fields to enhance its credibility. Experts help verify the drought data with their

professional knowledge of regional and local drought conditions and impacts.14 This

11The weekly USDM map can be accessed at https://droughtmonitor.unl.edu/.
12Svoboda et al. (2002) detail the supplementary indicators used by the Drought Monitor, including

the remotely sensed Satellite Vegetation Health Index, humidity and temperature departure from normal,
reservoir and lake levels, surface water supply indices, snowpack, and groundwater levels, etc.

13Definitions of these five key indicators and the relationships between the five indica-
tors and the magnitude of drought severity in the U.S. Drought Monitor are available at
https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx. Particularly, the Palmer Drought indices
take cumulative events into account so the measured intensity of drought during the current week de-
pends on current weather patterns plus the cumulative patterns of previous weeks.

14The USDM primarily relies on physical and objective data related to climate, weather, and hydrology
to determine the intensity of drought. Expert input enhances the understanding of drought conditions
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collective information is then integrated into a map that categorizes drought intensity

based on its historical frequency for a given location and time of year, reflecting local

impacts and vulnerabilities (Svoboda et al., 2002).15 Considering that drought events

are often driven by multiple environmental stresses that interact in complex and often

unpredictable ways, the USDM serves as the landmark tool for incorporating multivari-

ate drought indicators from various resources and experts’ knowledge in information

interpretation (Hao and Singh, 2015).

Since the USDM is a versatile and accessible tool providing timely and easily inter-

pretable data, it is widely used for drought management by producers and government

agencies. Kuwayama et al. (2019) document how federal and local government agen-

cies, particularly the U.S. Department of Agriculture, and private sector entities utilize

the USDM to guide critical decisions regarding drought response. Notably, the USDA

uses the USDM map as a trigger for several programs designed to help agricultural pro-

ducers recover from drought disasters. These programs include the Livestock Forage

Disaster Program (LFP), Fast Track USDA Disaster Designations, the Emergency Haying

& Grazing – Conservation Reserve Program (CRP), and Emergency Farm Loans.16

3 Conceptual Model

Our conceptual model builds on those of Cui (2020a) and Liu and Lu (2023) to illus-

trate how the effects of drought on produce production are transmitted through changes

in harvested acres and yields. Assume a representative FV grower chooses harvested

acreages at the end of the growing season to maximize her profit (π). The grower is a

price taker in her output market.17 Hence, given output price p, her total revenue de-

while preserving the objectivity of the assessments.
15Table A1 in the appendix lists the percentiles associated with each drought intensity class.
16See https://www.farmers.gov/protection-recovery/drought for more details.
17According to the 2017 Census of Agriculture, more than 15.6 million acres across approximately

243,000 farms were dedicated to specialty crops (including fruits, vegetables, nuts, and nursery crops),
with an average farm size of 64.2 acres.
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pends on the level of total output Q, which is a function of harvested acres A. The total

output is also affected by drought conditions indexed by D as well as the left skewness of

the yield distribution indexed by ξ. The costs include the marginal cost of harvesting c,

and the total cost incurred during the entire growing season before harvesting, indexed

by S, which is a sunk cost at the time of harvesting. The profit maximization problem

can be formalized as follows:

max
A

π = pQ(A; D, ξ)− cA − S (1)

Assuming the regularity conditions for the production function hold —that Q(.) is

monotonic, twice-continously differentiable, add quasi-concave—the optimal acreage,

A∗, exists and is the solution to the first order condition (FOC) given as: p
∂Q
∂A

− c = 0.18

By the implicit function theorem, we derive the drought impact (D) on A∗ by differenti-

ating both sides of the FOC with respect to D:

∂2Q
∂A2

dA∗

dD
+

∂2Q
∂A ∂D

= 0, ∀p ̸= 0 (2)

Rearranging (2) yields the comparative statics that illustrate how drought influences

the optimal harvest levels:

dA∗

dD
= − ∂2Q

∂A ∂D
/

∂2Q
∂A2 (3)

By monotonicity and the law of diminishing returns, Q(.) is assumed to increase

with acreage,
∂Q
∂A

> 0, at a decreasing rate,
∂2Q
∂A2 < 0, which is consistent with higher-

yielding land being typically harvested first (Cui, 2020a; Liu and Lu, 2023). Additionally,

since drought damages plant growth and reduces yield (Kuwayama et al., 2019; Lesk,

18In this context, we rule out corner solutions for simplicity. The first order condition indicates that the
grower maximizes profit when the marginal revenue from harvesting an additional acre is equal to the
marginal cost of that harvest.
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Rowhani, and Ramankutty, 2016), marginal productivity of land decreases as drought

severity increases, suggesting
∂2Q

∂A ∂D
< 0. Consequently,

dA∗

dD
would be negative, indi-

cating that drought decreases the optimal harvested acreage.

The conceptual model implies that drought decreases A∗ primarily due to not har-

vesting low-yield acreage, which, in turn, decreases total output. However, reduced

yields might also reduce output at the intensive margin. Therefore, our empirical analy-

sis decomposes the effects of drought on output into its effects on acreage and yield, Y.

Formally, Q is by definition given as:

Q = A(D)× Y(D) (4)

By total differentiation with respect to drought, the marginal change in total production

due to drought can be decomposed into marginal changes in harvested acres and yield

as:

∂Q
∂D

dQ =
∂A
∂D

dA +
∂Y
∂D

dY. (5)

In our empirical analysis, we estimate each of these marginal effects separately.

4 Data Description

The empirical analysis combines county-level data on FV production and drought in

California. The drought data is sourced from the USDM for 58 counties between 2000

and 2019. County-level crop data is obtained from the California annual county report,

which includes detailed production information for 26 types of fruits and 27 types of

vegetables, as listed in Table A2. The dependent variables of interest are county-level

total outputs, yields per acre, and harvested acres of FV, while the key explanatory

variables are the USDM drought categorizations.
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4.1 USDM Data

As a composite product, the USDM has several advantages over other drought indices.

It integrates multiple data sources, provides timely updates, effectively captures emerg-

ing droughts, and is easy to interpret (Mishra and Singh, 2010). However, the USDM

drought data have a couple of shortcomings related to our study.

First, the categorization of USDM drought intensity does not necessarily follow county

boundaries (Kuwayama et al., 2019). Second, counties experiencing droughts are not nec-

essarily where fruits and vegetables are grown. Hence, to achieve the study’s objective of

investigating the impact of drought on FV production while minimizing potential mea-

surement errors, we follow a similar approach to that of Schlenker and Roberts (2009)

and develop an annual county-level, crop-specific measure of the drought occurrence us-

ing a unique combination of dataset obtained from the California Department of Water

Resources and the USDM. Our measure captures the degree of drought in agricultural

areas that are specific to each crop within counties for each calendar year.19

Specifically, we construct our annual, county by crop-specific drought variables using

the annual statewide crop mapping GIS information from the DWR and the weekly GIS

information for drought categorizations from the USDM. The county and crop-specific

drought variables Dc,ijt were calculated as follows:

Dc,ijt = ∑
w

(
Area of crop j in county i under drought category c during week w

Total agricultural area of crop j in county i

)
, (6)

where w indicates the weeks falling between January and December of year t. To apply

the formula, we first use the statewide 2014 Crop Layer20 to compute the total agri-

19Ideally, one would like to account for crops’ temporal growing patterns and use crop year instead
of the calendar year. However, our production data are reported annually, and the fact that perennial
specialty crops have long-term growing cycles limits our ability to define appropriate crop years in our
analysis. We address this limitation by adding crop-specific fixed effects in our econometric models.

20Data source: California Statewide Crop Mapping. https://data.cnra.ca.gov/dataset/statewide-crop-
mapping. Accessed on September 5, 2024. The California DWR has provided the statewide crop layer
data since 2014 and updates it every two years. The FV cover layer may indeed change over time, but
unfortunately, the earliest layer data we can obtain is the 2014 crop layer. By comparing the available
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cultural acreage21 for each fruit and vegetable within a county. Then, we calculate the

percentage of county agricultural acreage affected by each USDM drought for each crop

on a weekly basis and aggregate the weekly values for each drought category across

a calendar year. Thus, the drought variables are defined as the area-weighted number

of weeks during which a county experiences a drought of a given severity level. To

avoid a possible multicollinearity problem among USDM intensity levels in the follow-

ing analyses, we further combine D0, D1, and D2 intensity levels and consider them to

be at a low-intensity drought level. Likewise, D3 and D4 are combined to indicate the

high-intensity drought level.22

Third, a potential concern with using the USDM is that it incorporates remotely

sensed satellite vegetation health as a supplementary indicator, which may introduce

endogeneity into the regressors. While it is impossible to determine the extent to which

vegetation health is emphasized in the construction of the USDM, it is not one of the five

key indicators that determine the magnitude of drought. Therefore, the potential issue

of endogeneity in the estimation may be limited. To alleviate this concern, we further

instrument the drought variable with two objective indicators: annual gross precipitation

and annual average maximum temperature at the county level. Both of these indicators

play a dominant role in drought occurrence (Mishra and Singh, 2010). We acknowledge

that the assumption behind the exclusion restriction—namely, that precipitation and

maximum temperature influence crop production only through drought conditions—is

quite strong, though it is testable in our study. For this reason, we treat the instrumental

variable approach as a robustness check on the coefficient sign.

crop layer information in 2014, 2016, and 2018, we notice that the crop acreages of FV did not change
significantly. Furthermore, as discussed below, we conduct a subsample analysis with varying crop layer
information over years and find that our main results are robust.

21The DWR sought expertise to identify crop types and land uses and quantify crop acreages statewide
using remote sensing and associated analytical techniques. Since remote sensing detects active growth,
especially early in the growing season, agricultural acreage can be considered as planted acreage.

22There are alternative ways to combine the five USDM drought intensity categories. Since drought
magnitude is classified into four primary categories (D1 through D4), it makes sense to combine D1 and
D2 (plus D0) and combine D3 and D4. In addition, our analyses show this aggregation produces the
lowest correlation among drought variables and the best model fit.
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Summary statistics for the county-level USDM measures are presented in the upper

portion of Table 1. As expected, the average number of weeks assigned to a particular

drought intensity is smaller for more intense drought classes, except when the average

number of weeks for D4 exceeds that of D3. To visualize the annual variation of drought

intensity levels across different counties, Figure 1 illustrates the variability of drought

conditions observed from 2000 to 2019. The map reveals a relatively high frequency of

drought occurrences in the agricultural land dedicated to growing FV in California over

the past twenty years. The map also shows that counties located along the Central Valley,

which is home to the majority of fresh produce, exhibit the most variable drought condi-

tions during the study period. Since our primary objective is to determine how drought

affects the production of fresh produce, the coefficient estimates will be driven by the

relationship between drought conditions and agricultural outcomes in these counties

characterized by high variability.

4.2 Data on Agriculture

County-level production data are available annually from 2000 through 2019 from the

annual Crop Reports from the California County Agricultural Commissioners.23 These

data contain annual records on total outputs, yield per acre, harvested acres, and the

Free-on-Board (F.O.B.) packed price per unit of FV. The total output at the county level

represents the total production, while yield per acre represents the ratio of total produc-

tion to the total number of acres harvested. The data are missing for some county-year

combinations due to a small number of counties, such as Trinity, Modoc, Lassen, and

Humboldt, not submitting or updating their production information. However, none of

these counties are major producers of fruits or vegetables. For some crops, the data are

recorded at the variety level. To maintain consistency, we use the aggregate crop-level

23Data source: California Agricultural Production Statistics. https://www.cdfa.ca.gov/Statistics/. Ac-
cessed on September 5, 2024.
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values.24 The data show that out of the 58 counties in California, 48 counties reported

production information for fruits or vegetables during the study period.

The two supplementary data sources used in the heterogeneity analyses are the wa-

ter demand data collected from the DWR and insurance-related data from the USDA

Risk Management Agency (RMA). The state-level data from the DWR provides annual

information on the amount of water applied to specific crop categories per unit area.25

Using this dataset, we calculate annual average applied water for each crop category at

the state level. We then rank the crop categories based on their water requirements and

classify them as either water-intensive or less water-intensive, using the mean applied

water as the threshold. Additionally, we utilize RMA data to group FV into two cate-

gories: those with individual crop insurance programs during most of the study period

and those without such programs.26

4.3 Irrigation Data

Under drought conditions, when surface water supplies decline, increased groundwater

pumping is a common practice in California. Following Edwards and Smith (2018), we

define groundwater access based on the physical presence of an underlying aquifer, as

identified by the U.S. Geological Survey (USGS, 2003).27 Figure 2 displays the ground-

water storage access and the agricultural area of FV in California. Considering that

groundwater use typically occurs near its source, we do not apply any spatial buffer.

24For the yield and price variables, the data for different varieties cannot be directly aggregated. There-
fore, we estimated the weighted yields and prices for crops with several varieties, where the weight equals
the proportion of the outputs of the variety to the total outputs.

25Data source: California Department of Water Resources. https://water.ca.gov/Programs/Water-Use-
And-Efficiency/Land-And-Water-Use. In this dataset, FV are classified into the following categories:
Tomatoes for processing; Tomatoes for market; Cucurbits including melons, squash and cucumbers;
onions and garlic; potatoes; other truck crops; other deciduous crops; subtropical crops and vine. Ap-
plied water is the quantity of water applied to a specific crop per unit area.

26Data source: USDA Risk Management Agency. https://www.rma.usda.gov/about-crop-insurance.
27Previous studies rely on previously observed county-level irrigation at a particular time to define

areas as irrigated (Cui, 2020a; Kuwayama et al., 2019). However, this approach fails to account for the
change of irrigation sources during droughts.
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Instead, we calculate the proportion of each county that overlays an aquifer to define its

groundwater access. Counties where more than 70% of the area overlays an aquifer are

classified as highly irrigated.28

4.4 Weather Data

To construct instrumental variables, we rely on precipitation and temperature data from

the National Oceanic and Atmospheric Administration (NOAA) to determine the an-

nual weather conditions within counties in California. Specifically, we use annual gross

precipitation and annual average maximum temperature in each calendar year at the

county level.

Summary statistics for agricultural outcomes and other variables are presented in the

bottom portion of Table 1. The panel is unbalanced due to the inconsistent availability of

crop production statistics across years and variations in specialty crop planting decisions

within counties.

5 Empirical Framework

In this section, we discuss our empirical strategy, which leverages panel fixed effects to

quantify the net impacts of an additional week of drought at varying intensities on fresh

produce production at the county level. This strategy exploits rich spatial and inter-

temporal variation in agricultural outcomes, drought intensity, and drought duration.

28A majority of counties producing FV are located in California’s Central Valley, which is covered by
an aquifer layer.
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5.1 Main Specification

We estimate the following equation to identify the relationship between drought and

fresh produce production in California:

Ln(Outputijt) = α + ∑
l∈(L,H)

βl f (Droughtijt,l) + θij + ϕit + γjt + ϵijt (7)

where Outputijt denotes the total output of crop j in county i in year t. The term

f (Droughtijt,l) is a general function capturing drought conditions, which indicates the

area-weighted number of weeks that agricultural areas growing crop j in county i ex-

perienced either low-intensity (L) or high-intensity (H) drought during year t. Crop-

by-county fixed effects, θij, account for differences in how crops withstand drought and

control for time-invariant, crop-specific local factors, such as soil type, quality, and farm-

ing practices. Crop-by-year fixed effects, ϕit, capture crop-specific shocks. For instance,

citrus crops in California have been plagued by Huanglongbing disease since 2012, pos-

ing a threat to citrus production. County-by-year fixed effects, γjt, control for county-

specific shocks, including variations in institutional changes, market conditions, climatic

changes such as ozone stress change, and policy responses. For instance, counties may

adopt different water allocation policies to mitigate drought impacts. ϵijt represents the

idiosyncratic shock. Given the observational nature of our data and research design,

we follow the guidelines outlined by Abadie et al. (2023) and MacKinnon, Nielsen, and

Webb (2023) and cluster standard errors at the county level throughout. This strategy

allows for arbitrary spatial correlation across counties and serial correlation over years

within a county.

Following Kuwayama et al. (2019) and Sumner, Li, and Shr (2023), we consider a

linear functional form for f (Droughtijt,l) as our main specification:

Ln(Outputijt) = α + βLDroughtijt,L + βHDroughtijt,H + θij + ϕit + γjt + ϵijt (8)
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Conditional on fixed effects, the coefficients of interest, βL and βH, capture the uni-

form effect of an additional week of drought at low intensity and high intensity on fresh

produce production outcomes, respectively. We omit a variable that represents the num-

ber of weeks in which a county is not indicated as being in any drought status. In doing

so, the coefficients of interest can be interpreted as the impact of drought on the total

output of fresh produce when the entire agricultural area of a county’s crop is affected

by an additional week of drought, with particular severity, relative to not experiencing

any drought at all.

We estimate βL and βH using a multilevel fixed effects approach, because all units

in our sample receive continuous "doses" of drought in each period, and we have mul-

tiple treatment variables at different intensity levels. βL and βH thus represent a dose

response to drought at low intensity and high intensity, respectively. According to Call-

away, Goodman-Bacon, and Sant’Anna (2024), when the dose-response function is het-

erogeneous, a stronger parallel trend assumption is needed. Specifically, the average

change in crop output across counties at a given level of drought is the same as what

all counties would experience, on average, if they all experienced that dose. If this as-

sumption holds and the drought "dose" follows a normal distribution, the fixed effects

estimator provides a weighted average of slopes that approximates the average causal

response. However, without an established test for the strong parallel trend assumption,

our results should be interpreted with caution, as they rely on this strong assumption

being valid.

Another important assumption for unbiased estimates of βL and βH in Equation (8)

is the absence of interference between units, known as the Stable Unit Treatment Value

Assumption (SUTVA). This assumption implies that the crop output in county i depends

solely on the drought conditions in the same county. To assess potential violations

of SUTVA, we model spillovers using a spatial matrix, W. This approach transforms

Droughtijt,L and Droughtijt,H into a spatially-weighted average of drought conditions
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around county i, referred to as the "spatial lag of X" (SLX) (Halleck Vega and Elhorst,

2015; Madhok, 2024):

SLXijt,l = (IT ⊗ WD) · Droughtijt,l, l ∈ (L, H) (9)

Here, WD is a symmetric D × D matrix, where D represents the number of counties in

the study sample. IT is a T × T identity matrix, with T being the number of years in

the study period. The Kronecker product indicates that WD is applied to the drought

variables for each time period and subsequently stacked into a panel of spatially lagged

drought conditions. Specifically, we define WD using inverse-distance weighting ma-

trices. By incorporating SLXijt,l into Equation (8), we can test and control for spillover

bias.

5.2 Decomposed Specification

A change in the total output of produce within each drought category involves both

the crop yield response and the acreage response to droughts as we discussed in the

conceptual section. Understanding these dynamics is crucial for evaluating the overall

impact of drought on agricultural production. To analyze how drought affects total

output through these two components, we estimate Equation (8) using log yield per acre

and log harvested acres as the dependent variables. With the fixed effects model, the

impacts of drought on different production components will sum precisely to the overall

effect on total production, provided that all regressions include the same independent

variables.29

29According to Equation (5), log(total outputQ) = log(yieldY)+ log(harvested acresA). The coefficient
matrix from the regression Q = xβ + e is β̂ = (x

′
x)−1x

′
Q = (x

′
x)−1x

′
(Y + A) = β̂Y + β̂A.

19



5.3 Treatment Heterogeneity

In our primary specification, the estimated impact of an additional week of drought on

fresh produce output encompasses all on-farm activities available to agricultural pro-

ducers that can either help mitigate or exacerbate the biophysical impact of drought on

crops. To further examine the heterogeneous impacts of drought on fresh produce pro-

duction and explore potential adaptive responses by growers that complicate the supply

response of crops under drought conditions, we analyze the extent to which the esti-

mated impact varies by the following factors: the type of growth cycle (annual versus

perennial crops), water requirements (high-water versus low-water crops), economic re-

turns (low-return versus high-return crops), and the presence of crop insurance (crops

with individual insurance programs versus those without). Table A2 in the Appendix

lists the specific crop subgroups considered for these four factors. Specifically, we con-

duct subgroup analyses relying on the main specification and perform Fisher’s permu-

tation test to determine the significance of observed differences in coefficient estimates

between the two groups.

Growth cycles: Drought effects might vary between annual and perennial crops as

farmers may employ different adaptation strategies for crops with different growth cy-

cles given that a drought often persists for months or even years. For instance, on

the one hand, annual crops (i.e., most vegetables) have relatively short growth cycles,

thereby enabling growers to adjust their production patterns more easily in the event of

a long-term drought. Annual crops, however, generally have lower market values than

those of perennial crops.30 The high cost of water during drought may make annual

crops less profitable. On the other hand, perennial crops (i.e., most fruits) require a

protracted growing cycle before they can be harvested. They are particularly vulnerable

to the effects of climate change due to their year-round exposure to fluctuating weather

30According to USDA (2024), the average retail price of fresh fruits is higher than that of fresh vegeta-
bles. Data source: https://www.ers.usda.gov/data-products/fruit-and-vegetable-prices/.
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conditions. Any adaptations taken to mitigate the effects of drought on perennial crops

could be costly (e.g., removal, replacement, or irrigation). However, the economic values

of perennial crops are generally higher than those of annual crops.

Water requirements: Another source of crop heterogeneity is that different crops

have varying water requirements and exhibit a wide range of abilities to withstand

droughts. Droughts are often accompanied by water deficits. Crops with high water

demands are expected to be most affected in the long run, despite the fact that irrigation

might help counteract the effects of drought, at least in the short term (Hornbeck and

Keskin, 2014; Pathak et al., 2018).

Economic returns: The severity of drought impacts on water-intensive crops is not

solely determined by the crops’ biological water needs but can also be exacerbated by

farmers’ adaptation behaviors under drought stress. In situations of limited water sup-

plies and high water prices, it becomes more economically beneficial to allocate irrigation

resources to crops with a high value. To test this hypothesis, we classify fresh produce

into two groups: low-return and high-return, based on their annual average unit F.O.B.

price and water demand.31

Crop insurance: The federal crop insurance program may be another factor influenc-

ing regional yield distribution, leading to varying responses in harvested acres and total

production. Policymakers have attempted to reduce moral hazard by linking payments

to how actual outcomes around harvest time deviate from guaranteed levels. However,

substantial subsidies for insurance premiums may have reduced input use intensity and

encouraged expansion onto less suitable lands, skewing the yield distribution toward the

31The concept of return used here is not in a strict sense. Since we have no information on other
agricultural inputs for each crop, we only consider the cost of irrigation. We assume that other input costs
will not be significantly affected by drought conditions. If a crop requires a substantial amount of water
for growth, the cost of irrigation will be high due to increased expenses associated with pumping during
drought periods. For example, Howitt et al. (2015) estimate a 75.5% increase in the costs of additional
pumping during the 2015 California drought. We also calculate the annual average unit F.O.B. price for
each crop at the state level and classify a crop as high-value if its average price exceeds the mean price of
all FV. If a crop is both high-value and low-water-intensive, it is classified as a high-return crop. Otherwise,
it is classified as a low-return crop.
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left tail and potentially increasing vulnerability to weather shocks (Cui, 2020a). Despite

the steady growth of federal crop insurance coverage for specialty crops over the past 15

years, some FV remain uncovered, lacking individual insurance programs. We examine

whether drought impacts differ between crops with and without such coverage.32

6 Main Results

In this section, we first present the impacts of drought on total production and its com-

ponents, including yield per acre and harvested acres. We then demonstrate the hetero-

geneous effects across different groups of crop characteristics. Finally, we discuss the

results of robustness checks conducted to validate our main findings.

6.1 Drought Impacts on Production and Its Components

Column (1) in Table 2 reports the results of estimating Equation (8), where the dependent

variable is the logarithm of total outputs. The key coefficient estimates are all negative

and statistically significant, indicating that additional weeks of drought in any severity

category are associated with reduced fresh produce outputs. Drought has the expected

effect of decreasing outputs, with more severe drought having a greater impact. At

a low-intensity level of drought, the average decline in output is 1.2 percent for an

additional week, while at a high-intensity level of drought, the magnitude of the decline

is 2.2 percent for an additional week. Considering that, on average, counties experience

23 weeks of drought at the low-intensity level and 7 weeks of drought at the high-

intensity level within a year, the impact of drought on FV production is considerable

compared to periods without drought.

32Whether a crop is covered by the federal crop insurance program may be endogenous, influenced by
factors such as its economic significance and stakeholder support. Our analysis does not aim to resolve
this endogeneity but rather to highlight the differential impacts of drought on crops with and without
individual insurance programs.
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Furthermore, we estimate the effects of drought on produce yields and harvested

acreage separately to identify processes leading to production losses. The results in

column (2) indicate a negative association between drought, at both the low-intensity

and high-intensity levels, and crop yields. The magnitude of the yield response ranges

from a 0.4% loss for an additional week of drought at the low-intensity level to a 0.9%

decrease for an additional week of high-intensity drought. The negative relationship

between drought and harvested acreage is also evident as shown in column (3) of Table

2. In comparison, the harvested acreage of specialty crops is found to be more responsive

to droughts, with a reduction of 0.7% for an additional week of drought at the low-

intensity level and a drop of 1.3% for an additional week at the high-intensity level.

Our findings slightly differ from previous research, which indicated that the impact

of drought on production was more driven by yield responses rather than changes in

harvested acreage.33 This underscores the significance of adaptive harvesting behaviors

during drought conditions in FV production.34 Nonetheless, our results suggest that,

as drought worsens, FV production is predicted to decline sharply, primarily due to

decreases in both crop yields and harvested acreage.

6.2 Heterogeneity Analysis

In the Empirical Framework section, we hypothesize that the growth cycle, water re-

quirements, economic returns, and insurance programs of crops will influence growers’

optimal harvesting decisions. To test these predictions, we conduct subgroup analyses

and examine the significance of observed differences in coefficient estimates of drought

33Lesk, Rowhani, and Ramankutty (2016) find that national cereal production during a drought is re-
duced by 10.1% on average, with yields declining by 5.1% and harvested area dropping by 4.1%. Similarly,
Sumner, Li, and Shr (2023) show that yield accounts for 72% and 74% of drought impacts on corn and
soybean production.

34Farmers may adjust their harvested acres in response to drought conditions by either reducing the
number of acres they plant or decreasing the amount harvested. Unfortunately, the lack of county-level
data on planted acres for specific crops makes it difficult to determine which of these strategies they
employ.
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variables between groups. Figures 3 through 6 present the results for the heterogeneity

analysis.

Growth cycles: Figure 3 illustrates the impacts of drought on production outcomes

(i.e., total production, yield per acre, and harvested acres) by crop growth cycle. The

results show that drought negatively affects both annual and perennial crops, though the

effects vary by drought intensity. However, Fisher’s permutation test indicates that the

differences in drought impacts between annual and perennial crops are not statistically

significant. This suggests that drought affects both types of crops in a similar way.

Water requirements: Figure 4 shows the estimated effects of drought on crops with

intensive and less intensive water needs. The results indicate a significant negative im-

pact of drought on the output of water-intensive crops, with reductions ranging from

1.2% to 1.9% for each additional week of drought. In contrast, the outputs of crops

with lower water demand are less sensitive to drought. None of the drought severity

levels show a statistically significant impact on the outputs of crops with lower water

demands. The p-values of the tests for differences between coefficients confirm that

an additional week of drought at the high-intensity level has a more detrimental ef-

fect on the production of thirsty crops relative to less thirsty crops. The figure also

reveals that drought impacts harvested acres more than yields for both crop groups. For

water-intensive crops, harvested acres decrease significantly—by 0.7% to 1.01% for each

additional drought week—while yields show smaller, statistically insignificant reduc-

tions. This pattern suggests that during droughts, farmers likely respond by reducing

the area harvested, but the yields on remaining acres are relatively stable. Similarly, less

water-dependent crops show declines in harvested acres, though these effects are less

pronounced, and no significant changes in yield are observed.

Economic returns: In addition to crops’ biophysical characteristics, the results pre-

sented in Figure 5 reveal differences in the effect of drought on production outcomes

between the low-return and high-return groups. The negative impacts of drought on
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low-return crops are of larger magnitudes as we hypothesized. The significance of

these differences is further confirmed by the p-values for testing the differences. For

the yield component, low-return crops experience a significant decrease under high-

intensity drought, while high-return crops show no significant change. Similarly, har-

vested acres of low-return crops are more negatively affected by drought, with significant

reductions at both intensity levels. These findings support the hypothesis that farmers

prioritize water allocation to higher-return crops, potentially worsening the effects of

drought on lower-return crops.

Crop insurance: Finally, the results in Figure 6 show how crop insurance programs

affect the impact of drought on production outcomes. Crops covered by individual in-

surance programs experience significantly larger reductions in production under both

low- and high-intensity drought conditions, particularly with a decline of 2.73% for each

additional week in high-intensity drought. In contrast, crops without individual insur-

ance programs exhibit no statistically significant changes in production under drought

conditions. Similarly, yield and harvested acres of insured crops are more negatively

affected by drought, with reductions at both intensity levels. These findings suggest

that insured crops may experience moral hazard, where farmers reduce their efforts in

mitigating drought impacts due to the presence of insurance coverage.

Although the data do not allow us to track the evolution of specific on-farm practices

in response to changes in drought circumstances, these findings support the possibility

of farmers adopting adaptive behaviors in response to drought.

6.3 Robustness Checks

This section demonstrates robustness to drought variable constructions, alternative vari-

ants of the main specification, spillover effects, and endogeneity issues.

Alternative aggregation: The main results can be put to further robustness tests

by using an alternative way of aggregating levels of drought intensity. In the main

25



specification, drought categories D0 to D2 are combined as the low-intensity drought

level, while D3 to D4 are combined as the high-intensity drought level. To examine the

robustness of the findings, we alternatively combine D0 to D1 as the low-intensity level

and D2 to D4 as the high-intensity level. Table 3 reports the results for the alternative

definition. Overall, the significance and magnitude of the results remain similar to the

main findings when the definition of aggregated drought intensity levels is replaced

with the alternative definition. Under the alternative definition, an additional week of

drought in any severity category is associated with lower outputs of specialty crops, as

reflected in the decline of yields and harvested acreages.

Varying weights for constructing drought variables: Our primary model uses 2014

Crop Layer data to obtain land coverage of each crop within counties, which serves as

weights for constructing crop-specific drought intensity variables such as D0ijt. Using

fixed weights across the sample period raises potential concerns, as crop acreage may

change over time in response to various factors, including drought. To account for

this, we also conduct an analysis using a restricted sample from 2012 to 2019, applying

available crop layer data from 2014, 2016, and 2018 as weights to build the drought

variables. The results, shown in columns 1, 3, and 5 of Table 4 for output, yield, and

harvested acres, respectively, align with those using fixed weights (columns 2, 4, and 6),

though the coefficient for high-intensity drought is slightly smaller.

Non-linearity function: In our main specification, we consider a linear functional

form for f (Droughtijt,l). However, previous literature on weather impacts has demon-

strated the usefulness of a quadratic specification of temperature and precipitation (Burke,

Hsiang, and Miguel, 2015). To account for the possible non-linear relationship between

drought variables and the total outputs of fresh produce, we also consider alternative

specifications using the quadratic vector of drought variables. That is, f (Droughtijt,l) =

Droughtijt,l + Drought2
ijt,l. However, tests for a U-shaped relationship fail to reject the

null hypothesis that the true relationship is monotonic over relevant data values (Lind
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and Mehlum, 2010), which suggests that our main specification is appropriate.35

Standard error clustering: Table A7 shows the baseline estimates adjusted for alter-

native clustering. In columns 1, 3, and 5, we replicate the baseline results, clustering

standard errors at the county level to account for potential unobserved shocks. A poten-

tial issue arises from clustering at the county level due to the limited number of clusters

(Colin Cameron and Miller, 2015). To examine the role of clustering in determining the

effects of droughts, we replicate the estimation results by clustering the standard errors

at the county × crop level. The results, shown in columns 2, 4, and 6, remain nearly

identical. Similarly, columns 3, 5, and 7 demonstrate that using robust standard errors

produces comparable estimates. These consistent findings across various methods con-

firm the robustness of our results, indicating that clustering is unlikely to pose an issue

in our analysis.

Sensitivity to spatial spillovers: Table 5 presents the results of incorporating the

spatial lag of explanatory variables to capture potential spillover effects. The findings

indicate that spatial spillovers have minimal impact, as the estimated production losses

remain consistent even when accounting for influences from neighboring counties.

Instrumental Variable Estimates: As discussed in the Data section, the USDM in-

corporates remotely sensed satellite vegetation health as a supplementary indicator,

which may introduce endogeneity into the regressors. While this potential issue is

likely limited, we show that our results are robust to an IV design. We use objective

measures—precipitation and maximum temperature—as instruments for the drought

variable. Table A8 presents the results from the two-stage least squares (2SLS) speci-

fication, where the independent variable is either a simple or weighted summation of

weeks in drought at any level, and the independent variable is the total outputs. The

F-statistics for weak instrument tests are 103 for the simple summation and 43 for the

weighted summation. Hausman tests reveal no evidence of endogeneity, and overidenti-

35The p-values from the U-shape test are 0.397 for the DroughtL variable and 0.304 for the DroughtH
variable when total outputs are used as the dependent variable.
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fication tests confirm the validity of our instruments. Columns 1 and 3 of Table A8 show

fixed effects results, while columns 2 and 4 report the 2SLS results. The 2SLS estimates

confirm the negative relationship between drought duration and production. While the

2SLS coefficients are smaller than or equal to the fixed effects estimates, comparing them

directly would be misleading.36 What is most important is that both methods show

consistent coefficient signs and statistical significance, reinforcing the robustness of the

relationship between drought and production loss.

7 Irrigation Adaptation

Irrigation has long been considered an important adaptation tool for mitigating the cli-

matic impacts on crops (e.g., Edwards and Smith, 2018; Smith and Edwards, 2021; Ed-

wards, Sanchez, and Sekhri, 2024). We build on existing discussions about the role of

irrigation and examine how it can help reduce the negative effects of drought on crop

production. Due to the lack of detailed county-level irrigation data for each crop, we

adopt a method similar to that used by Cui (2020a) and Kuwayama et al. (2019). We

compare the effects of drought in counties with aquifers and access to groundwater,

which typically have higher levels of irrigation, to those that rely on standard irrigation

practices without such access.

The results presented in Figure 7 examine the production losses resulting from drought

shocks in high-irrigated and standard-irrigated counties. The coefficients for both low-

and high-intensity drought levels indicate that drought negatively impacts production

output, with high-irrigated counties experiencing smaller losses compared to standard-

irrigated counties. Specifically, under low-intensity drought conditions, high-irrigated

counties show a production loss of 1.1% per additional week, while standard-irrigated

counties face a more substantial loss of 8.3%. Similarly, during high-intensity drought,

362SLS estimates the LATE, while OLS estimates the ATE. Directly comparing LATE and ATE can be
misleading.
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the loss for high-irrigated counties is 2.3%, compared to 6.7% for standard-irrigated

counties. The Fisher’s permutation test indicates that the differences in drought impacts

between high-irrigated counties and standard-irrigated counties are statistically signifi-

cant.

In terms of yield response, high-irrigated counties again demonstrate less sensitivity

to drought shocks than their standard-irrigated counterparts. The response of harvested

acres follows a similar pattern under low-intensity drought conditions; however, there

are no statistically significant differences between the two types of counties during high-

intensity drought. These results provide clear evidence that irrigation mitigates the

negative impacts of drought shocks on crop production, although the irrigation-related

adjustments in yields are more pronounced than those for harvested acres.

8 Discussion and Conclusion

In this section, we discuss our findings by estimating the economic losses in dollar terms

and comparing them to the impacts of drought on corn and soybean production in the

United States, using the same drought data source. We also extend the comparison to

other relevant contexts. Finally, we summarize the key insights of our study and discuss

its implications, as well as its limitations.

8.1 Discussion

Our main findings show that drought has a clear, negative effect on total fresh produce

output. For each additional week of drought, production declines on average by 1.2%

to 2.2%, depending on the intensity of the drought conditions. To estimate the dollar

value of the losses associated with this percentage reduction in output, we conduct

back-of-the-envelope calculations. We first calculate the total annual value of each crop
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by multiplying its total production quantity by the production-share-weighted price.37

Subsequently, we derive the annual revenue losses for each crop by multiplying the total

value by the percentage reduction. Figure A2 presents the estimates. For example, in

the case of grape production, which is the highest-grossing specialty crop cultivated in

California, the annual total value ranges from $2,193.85 to $7,344.08 million during the

2000-2019 period. Thus, the losses for grapes range from $26.33 to $88.13 million for

an additional week of low-intensity drought, and from $48.26 to $161.57 million for an

additional week of high-intensity drought.38 Given that, on average, California counties

experienced varying degrees of drought for several weeks within a year during the study

period, the cumulative impact of droughts on crop production is substantial.

When comparing our findings to studies on corn and soybean production using the

same drought measurement, we observe a significantly greater impact of drought on FV

production. Kuwayama et al. (2019) report yield reductions of 0.1% to 1.2% per acre

for corn and soybeans in dryland counties for each additional week of drought, and

reductions of 0.1% to 0.5% in irrigated counties. In contrast, our analysis shows average

yield losses for FV crops ranging from 0.4% to 0.9% per acre, with marginal reductions

as high as 6.3% in counties with lower aquifer coverage (below 70%). Similarly, Sumner,

Li, and Shr (2023) estimate that a one-percentage-point increase in drought duration

decreases total corn output by 0.10% to 0.35% and soybean output by 0.06% to 0.48%.

In comparison, our results indicate that each additional week of drought reduces total

FV output by 1.2% to 2.2%. These findings emphasize the greater sensitivity of fresh

produce to drought conditions compared to staple crops like corn and soybeans.

However, the effects of drought on California’s produce are smaller when compared

to other contexts. Lesk, Rowhani, and Ramankutty (2016) show that droughts signifi-

cantly reduced global cereal production by 10%, Brás et al. (2021) find European cereal

37The prices reported in county reports are F.O.B. prices. The weight equals the production share of
each county. All prices are deflated by U.S. GDP using 2020 as the reference year.

38Note that the dollar value of losses associated with percentage reductions in output is roughly esti-
mated.
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yields drop by 9% during droughts, and Fleming-Muñoz, Whitten, and Bonnett (2023)

provide a summary documenting that Australian crop production falls by 18% to 60%

under drought conditions in different study periods. In Tanzania, Kubik and Maurel

(2016) estimate that the increase in water deficit by one standard deviation results in

a crop production decline by 20% to 30%. This discrepancy may be due to more ad-

vanced irrigation systems, agricultural technology, and institutional arrangements in the

U.S. Despite these advancements, California’s growing groundwater depletion calls for

stronger drought risk management strategies to mitigate future impacts.

8.2 Conclusion

More frequent severe drought episodes have occurred worldwide in recent decades,

coinciding with intensified climate change. Worse yet, these extreme weather events are

predicted to have a high probability of occurring in the future. Despite extensive studies

on the impacts of weather extremes on crop production, there has been limited focus

on quantitatively establishing the connection between drought occurrences and fresh

produce production. To fill this gap, this study employs county-level data to estimate

the net impacts of the California drought, as defined by the USDM, on fresh produce

outputs.

Overall, we find that drought exerts a statistically significant adverse impact on the

total outputs of fresh produce. The magnitude of this impact ranges between 1.2% and

2.2% for each additional week of drought. A decomposition of drought impacts on

total production shows that this reduction is driven by both lower yields per acre and

fewer harvested acres under drought conditions, with the acreage response being more

pronounced. Response heterogeneity related to different crop characteristics including

growth cycle, water requirement, economic returns, and crop insurance coverage further

illustrates the complexity in growers’ behavioral response to drought shocks. In addition,

we show that irrigation mitigates negative drought impacts on production losses. To
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strengthen the causal link between drought intensity and produce production outcomes,

a series of robustness checks offers additional supporting evidence.

The findings of this study speak directly to the susceptibility of agriculture to climate

change. The decline in crop production due to weather-related factors could potentially

worsen if the frequency of extreme weather events increases, posing risks to food security

given the vulnerability of food systems (Wheeler and Von Braun, 2013). Such declines

in crop production could lead to substantial losses in social welfare. Because Califor-

nia has a dominant position in both domestic and international specialty crop markets,

droughts in the state can have significant impacts on these markets. These implications

highlight the importance of developing risk-reducing measures, such as the introduc-

tion of drought-tolerant and high-yielding seed varieties, improving irrigation systems’

efficiency, and implementing sustainable water management regulations, to alleviate the

impacts of future droughts.

In spite of the contributions and policy implications of this study, there are still limi-

tations that need to be addressed in future investigations. Firstly, there is evidence that

crop production is affected not only by the duration and intensity of drought but also

by its timing in relation to the growing season (Li and Ortiz-Bobea, 2022; Sumner, Li,

and Shr, 2023) and specific growing stage (Rai, Singh, and Upadhyay, 2017). Due to data

limitations, we cannot investigate whether droughts have a more pronounced impact

during specific times of the year or growth stages. Further research is necessary to ex-

plore the effects of these factors in greater detail. Secondly, future research should delve

deeper into the distinction between droughts and heat effects. Although the inclusion

of county-year fixed effects in this study partially addresses the effects of heatwaves, it

remains unclear whether heatwaves contribute to the decline in FV outputs alongside

droughts. If high temperatures indeed play a significant role, and considering the pro-

jected warming trends in California, relying solely on irrigation alone will not suffice

as a solution. More comprehensive and integrated measures are needed to effectively
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address the challenges posed by the increasingly uncertain climate conditions ahead.
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Tables

Table 1: Summary Statistics of Major Variables

Mean Std. Dev. Min Max Obs

# weeks in D0 8.395 10.422 0 46.5 7,223

# weeks in D1 7.876 12.280 0 52 7,223

# weeks in D2 6.439 11.869 0 52 7,223

# weeks in D3 3.368 9.573 0 52 7,223

# weeks in D4 3.958 12.480 0 52 7,223

Total outputs (1000 Tons) 102.442 355.622 0.004 5744 7,223

Yield per acre (Tons) 12.061 14.114 0.11 553.57 7,223

Harvested Acreage (1000 Acres) 7.033 18.203 0.001 254.9 7,223

Price per unit (Dollar) 1076.733 1230.27 6.3 21094.03 7,223

Applied water (Acre-foot per Acre) 2.853 1.598 1.93 4.08 7,223

Annual gross precipitation (Inch) 80.221 51.294 2.57 358.75 7,223

Annual average maximum temperature (F) 73.484 5.224 59.227 90.054 7,223

Notes: Number of weeks in different drought intensities are weighted by % agricultural area affected.
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Table 2: Impact of Additional Weeks of Drought on Production Outcomes

(1) (2) (3)
Dependent Variable Ln(output) Ln(yield) Ln(harvested

acres)

# Weeks at low-intensity level -0.012*** -0.004* -0.007***
(0.003) (0.002) (0.002)

# Weeks at high-intensity level -0.022*** -0.009** -0.013***
(0.004) (0.004) (0.003)

Constant 9.860*** 2.258*** 7.611***
(0.078) (0.076) (0.072)

DroughtL+DroughtH=0 p-val 0.000 0.034 0.000

Crop × County FE Yes Yes Yes

Crop × Year FE Yes Yes Yes

County × Year FE Yes Yes Yes

Observations 6,985 6,985 6,985

Adj R2 0.950 0.886 0.958

Within R2 0.004 0.002 0.003

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the paren-
theses. (2) The number of weeks at the low-intensity level (i.e., DroughtL) equals the sum of the number
of weeks in D0, D1, and D2 drought. The number of weeks at the high-intensity level (i.e., DroughtH)
equals the sum of the number of weeks in D3 and D4 drought. (3) 238 singleton observations are dropped
iteratively to avoid biasing the standard errors Correia (2015). (4) *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Estimations in a Different Definition of Aggregate Drought Variables

(1) (2) (3)
Ln(output) Ln(yield) Ln(harvested

acres)

# Weeks at low-intensity level -0.012*** -0.004* -0.007***
(0.002) (0.002) (0.002)

# Weeks at high-intensity level -0.016*** -0.006* -0.010***
(0.004) (0.003) (0.002)

Constant 9.841*** 2.250*** 7.599***
(0.090) (0.076) (0.066)

DroughtL+DroughtH=0 p-val 0.000 0.034 0.000

Crop × County FE Yes Yes Yes

Crop × Year FE Yes Yes Yes

County × Year FE Yes Yes Yes

Observations 6,985 6,985 6,985

Adj R2 0.950 0.886 0.958

Within R2 0.003 0.001 0.002

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parenthe-
ses. (2) The number of weeks at the low-intensity level (i.e., DroughtL) equals the sum of the number of
weeks in D0 and D1 drought. The number of weeks at the high-intensity level (i.e., DroughtH) equals the
sum of the number of weeks in D2, D3 and D4 drought. (3) Singleton observations are dropped iteratively
to avoid biasing the standard errors. (4) *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: The Effects of Land Cover Issues on Estimation

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6)
Varying weights Fixed weights Varying weights Fixed weights Varying weights Fixed weights

#Weeks at low-intensity level -0.008∗∗∗ -0.007∗∗ -0.002 -0.004 -0.006∗∗∗ -0.004∗

(0.003) (0.003) (0.002) (0.003) (0.002) (0.002)

#Weeks at high-intensity level -0.006∗ -0.008∗∗∗ -0.005∗ -0.007∗∗ -0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

Constant 9.623∗∗∗ 9.894∗∗∗ 2.286∗∗∗ 2.364∗∗∗ 7.348∗∗∗ 7.544∗∗∗

(0.115) (0.112) (0.104) (0.103) (0.092) (0.086)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 3,983 2,662 3,983 2,662 3,983 2,662

Adj. R2 0.966 0.968 0.886 0.909 0.974 0.977

Within R2 0.002 0.002 0.001 0.002 0.004 0.002

Notes: (1) The sample is restricted to the period from 2012 to 2019. (2) Standard errors are clustered at the county level and reported in the parentheses. (3) The
number of weeks at the low-intensity level (i.e., DroughtL) equals the sum of the number of weeks in D0 and D1 drought. The number of weeks at the high-intensity
level (i.e., DroughtH) equals the sum of the number of weeks in D2, D3 and D4 drought. (4) Singleton observations are dropped iteratively to avoid biasing the
standard errors. (5) *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: The Effects of Spatial Spillovers

(1) (2) (3)
Ln(output) Ln(yield) Ln(harvested

acres)

#Weeks at low-intensity level -0.011*** -0.004* -0.007***
(0.002) (0.002) (0.002)

#Weeks at high-intensity level -0.022*** -0.009** -0.013***
(0.004) (0.004) (0.003)

#Weeks at low-intensity level 0.014 0.009 0.005
(County i ̸= d) (0.009) (0.006) (0.007)

#Weeks at high-intensity level 0.028 0.003 0.025
(County i ̸= d) (0.025) (0.012) (0.016)

Constant 9.745*** 2.207*** 7.548***
(0.087) (0.066) (0.077)

Crop × County FE Yes Yes Yes

Crop × Year FE Yes Yes Yes

County × Year FE Yes Yes Yes

Observations 6,985 6,985 6,985

Adj R2 0.950 0.886 0.958

Within R2 0.005 0.002 0.004

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parenthe-
ses. (2)#Weeks at low-intensity level (County i ̸= d) and #Weeks at high-intensity level (County i ̸= d) are
spatial lags of independent variables. (3) The number of weeks at the low-intensity level (i.e., DroughtL)
equals the sum of the number of weeks in D0 and D1 drought. The number of weeks at the high-intensity
level (i.e., DroughtH) equals the sum of the number of weeks in D2, D3 and D4 drought. (4) 238 singleton
observations are dropped iteratively to avoid biasing the standard errors(̇5) *** p<0.01, ** p<0.05, * p<0.1.
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Figures

Figure 1: California Map of Weighted Drought Index Based on USDM Drought Classifi-
cations during 2000-2019

Notes: Following the suggestions of USDM, for each year, the weighted drought index is calculated by
summing weighted weekly drought variables after they have been multiplied by a factor corresponding
to severity (e.g., weeks in D0 are the identity and weeks in D4 are multiplied by five). The range of the
weighted drought index is from 0 to 260. Here, we aggregated lands for all specialty crops in each county
and calculated weights for the vector of drought variables following the same steps as calculating weights
for drought variables for each crop. The figure illustrates the variation of drought across counties from
2000 to 2019. The more severe the drought, the darker the shades.
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Figure 2: Groundwater Storage Access and Produce Growing Areas in California

Notes: This figure presents the locations of aquifers alongside the major fruit and vegetable growing
regions in California. The data are sourced from the USGS (2003) and California statewide 2014 Crop
Layer.
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Figure 3: Heterogeneous Supply Responses to Drought by Growth Cycles

Notes: This figure illustrates the estimated coefficient for drought on production outcomes by crop growth
cycles. The bars represent 95 percent confidence intervals, and standard errors are clustered at the county
level. Table A3 provides detailed information.

47



Figure 4: Heterogeneous Supply Responses to Drought by Water Requirements

Notes: This figure illustrates the estimated coefficient for drought on production outcomes by crop water
requirements. The bars represent 95 percent confidence intervals, and standard errors are clustered at the
county level. Table A4 provides detailed information.
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Figure 5: Heterogeneous Supply Responses to Drought by Economic Returns

Notes: This figure illustrates the estimated coefficient for drought on production outcomes by crop eco-
nomic returns. The bars represent 95 percent confidence intervals, and standard errors are clustered at the
county level. Table A5 provides detailed information.
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Figure 6: Heterogeneous Supply Responses to Drought by Insurance

Notes: This figure illustrates the estimated coefficient for drought on production outcomes, distinguish-
ing between crops with and without established individual programs. The bars represent 95 percent
confidence intervals, and standard errors are clustered at the county level. Table A6 provides detailed
information.
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Figure 7: Production Losses from Drought Shocks: High Irrigated Counties versus Stan-
dard Irrigated Counties

Notes: This figure illustrates the estimated coefficient for drought on production outcomes, distinguish-
ing between high irrigation counties and standard irrigation counties. The bars represent 95 percent
confidence intervals, and standard errors are clustered at the county level. Table A9 provides detailed
information.
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Appendix

Table A1: Drought Intensity Classification by the U.S. Drought Monitor

Category Drought Intensity Percentile

D0 Abnormally Dry 20 to ≤ 30

D1 Moderate Drought 10 to ≤ 20

D2 Severe Drought 5 to ≤ 10

D3 Extreme Drought 2 to ≤ 5

D4 Exceptional Drought ≤ 2

Notes: The table outlines the percentile ranges for each drought intensity level in the U.S. Drought
Monitor. These levels are determined by their likelihood of occurrence, based on drought indicator data
collected between 1932 and 2001.
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Table A2: List of Fresh Produce Subgroups

No. Crop name Perennial Water-intensive High return Insured

1 Apples 1 1 0 1
2 Apricots 1 1 0 1
3 Artichokes 1 0 1 0
4 Asparagus 1 0 1 0
5 Avocados 1 1 0 1
6 Snap beans 0 0 1 0
7 Blueberries 1 0 1 1
8 Raspberries 1 0 1 0
9 Strawberries 1 0 1 0
10 Broccoli 0 0 0 0
11 Brussels Sprouts 0 0 0 0
12 Cabbage 0 0 0 0
13 Carrots 0 0 0 0
14 Cauliflower 0 0 0 0
15 Celery 0 0 0 0
16 Cherries 1 1 0 1
17 Citrus 1 1 0 1
18 Sweet corn 0 0 0 0
19 Cucumbers 0 0 0 0
20 Dates 1 1 0 0
21 Eggplant 0 0 0 0
22 Endive 0 0 0 0
23 Dried figs 1 1 0 0
24 Garlic 0 1 0 0
25 Grapefruit 1 1 0 1
26 Grape 1 0 1 1
27 Horseradish 1 0 0 0
28 Kale 1 0 1 0
29 Kiwifruit 1 1 0 0
30 Leeks 0 0 1 0
31 Lemons 1 1 0 1
32 Lettuce 0 0 0 0
33 Melons 0 0 0 0
34 Nectarines 1 1 0 1
35 Olives 1 1 0 1
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Table A2: List of Fresh Produce Subgroups (Countinued)

No. Crop name Perennial Water-intensive High return Insured

36 Onions 0 1 0 1
37 Orange 1 1 0 1
38 Parsley 0 0 0 0
39 Peaches 1 1 0 1
40 Pears 1 1 0 1
41 Peppers 0 0 0 0
42 Persimmons 1 1 0 0
43 Plums 1 1 0 1
44 Pomegranates 1 1 0 0
45 Potatoes 0 0 0 1
46 Pumpkins 0 0 0 0
47 Quince 1 1 0 0
48 Radishes 0 0 0 0
49 Spinach 0 0 0 0
50 Squash 0 0 0 0
51 Tangelos 1 1 0 0
52 Tangerines & Mandarins 1 1 0 1
53 Tomatoes 0 0 0 1

Notes: TThe table provides a list of 53 fruits and vegetables analyzed in our study, along with binary
indicators representing key crop characteristics. A value of “1” signifies that a crop belongs to a specific
subgroup, such as “perennial,” “water-intensive,” “high-return,” or “insured,” while a value of “0” indi-
cates that the crop is not part of those categories.
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Table A3: Heterogeneous Supply Responses to Drought by Growth Cycles

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Perennial Annual Diff-test Perennial Annual Diff-test Perennial Annual Diff-test

#Weeks at low-intensity level -0.009∗∗∗ -0.005 -0.005 -0.006 0.002 -0.008 -0.004 -0.006 0.002
(0.003) (0.006) [0.315] (0.003) (0.003) [0.155] (0.003) (0.005) [0.440]

#Weeks at high-intensity level -0.019∗∗∗ -0.022∗ 0.003 -0.011∗∗ -0.010 -0.001 -0.008∗ -0.011 0.003
(0.005) (0.012) [0.459] (0.004) (0.006) [0.480] (0.004) (0.008) [0.467]

Constant 9.395∗∗∗ 10.245∗∗∗ 1.924∗∗∗ 2.677∗∗∗ 7.485∗∗∗ 7.568∗∗∗

(0.104) (0.227) (0.104) (0.101) (0.093) (0.160)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 4,102 2,728 4,102 2,728 4,102 2,728

Adj. R2 0.953 0.938 0.848 0.848 0.969 0.942

Within R2 0.003 0.003 0.002 0.006 0.001 0.001

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parentheses. (2) We use the Fisher’s permutation test to
determine the significance of observed differences in coefficient estimates between two groups. The number of bootstrap repetitions is 1000. P-values for the
group coefficients difference are reported in the square brackets. (3) The number of weeks at the low-intensity level equals the sum of the number of weeks
in D0, D1, and D2 drought. The number of weeks at the high-intensity level equals the sum of the number of weeks in D3 and D4 drought. (4) Singleton
observations are dropped iteratively to avoid biasing the standard errors. (5) *** p<0.01, ** p<0.05, * p<0.1.
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Table A4: Heterogeneous Supply Responses to Drought by Water Requirements

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Thirsty Less Thirsty Diff-test Thirsty Less Thirsty Diff-test Thirsty Less Thirsty Diff-test

#Weeks at low-intensity level -0.012∗∗ -0.006 -0.06 -0.005 -0.000 -0.005 -0.007∗∗ -0.005∗ -0.002
(0.005) (0.004) [0.197] (0.004) (0.002) [0.235] (0.003) (0.003) [0.417]

#Weeks at high-intensity level -0.019∗∗∗ -0.006 -0.013 -0.009 -0.003 -0.006 -0.010∗∗∗ -0.002 -0.008
(0.006) (0.005) [0.071] (0.006) (0.004) [0.147] (0.002) (0.004) [0.119]

Constant 9.340∗∗∗ 10.123∗∗∗ 1.941∗∗∗ 2.481∗∗∗ 7.401∗∗∗ 7.643∗∗∗

(0.148) (0.128) (0.126) (0.076) (0.074) (0.089)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 3,180 3,440 3,180 3,440 3,180 3,440

Adj. R2 0.945 0.952 0.850 0.889 0.961 0.957

Within R2 0.004 0.001 0.002 0.000 0.003 0.001

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parentheses. (2) We use the Fisher’s permutation test to determine
the significance of observed differences in coefficient estimates between two groups. The number of bootstrap repetitions is 1000. P-values for the group coefficients
difference are reported in the square brackets. (3) The number of weeks at the low-intensity level equals the sum of the number of weeks in D0, D1, and D2 drought.
The number of weeks at the high-intensity level equals the sum of the number of weeks in D3 and D4 drought. (4) Singleton observations are dropped iteratively to
avoid biasing the standard errors. (5) *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: Heterogeneous Supply Responses to Drought by Economic Returns

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
High-return Low-return Diff-test High-return Low-return Diff-test High-return Low-return Diff-test

#Weeks at low-intensity level -0.005 -0.012∗∗∗ 0.007 0.004 -0.003 0.007 -0.010 -0.008∗∗∗ -0.002
(0.012) (0.003) [0.003] (0.008) (0.002) [0.000] (0.008) (0.003) [0.000]

#Weeks at high-intensity level -0.018 -0.024∗∗∗ 0.006 0.002 -0.009∗ 0.011 -0.021 -0.016∗∗∗ -0.005
(0.018) (0.004) [0.059] (0.010) (0.005) [0.258] (0.015) (0.003) [0.052]

Constant 9.543∗∗∗ 9.907∗∗∗ 1.737∗∗∗ 2.314∗∗∗ 7.833∗∗∗ 7.596∗∗∗

(0.424) (0.094) (0.281) (0.080) (0.298) (0.076)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 748 5,722 748 5,722 748 5,722

Adj. R2 0.961 0.946 0.876 0.885 0.975 0.952

Within R2 0.004 0.005 0.001 0.002 0.007 0.004

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parentheses. (2) We use the Fisher’s permutation test to determine the significance
of observed differences in coefficient estimates between two groups. The number of bootstrap repetitions is 1000. P-values for the group coefficients difference are reported in the
square brackets. (3) The number of weeks at the low-intensity level equals the sum of the number of weeks in D0, D1, and D2 drought. The number of weeks at the high-intensity
level equals the sum of the number of weeks in D3 and D4 drought. (4) Singleton observations are dropped iteratively to avoid biasing the standard errors. (5) *** p<0.01, **
p<0.05, * p<0.1.
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Table A6: Heterogeneous Supply Responses to Drought by Insurance

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Insured Uninsured Diff-test Insured Uninsured Diff-test Insured Uninsured Diff-test

#Weeks at low-intensity level -0.013∗∗∗ -0.001 -0.012 -0.007∗∗ 0.004 -0.011 -0.006∗ -0.005 -0.001
(0.004) (0.005) [0.153] (0.003) (0.003) [0.066] (0.003) (0.003) [0.439]

#Weeks at high-intensity level -0.027∗∗∗ 0.002 -0.029 -0.015∗∗ 0.001 -0.016 -0.012∗∗∗ 0.001 -0.013
(0.007) (0.008) [0.039] (0.006) (0.005) [0.069] (0.004) (0.005) [0.123]

Constant 9.962∗∗∗ 9.466∗∗∗ 2.156∗∗∗ 2.290∗∗∗ 7.824∗∗∗ 7.179∗∗∗

(0.119) (0.165) (0.105) (0.107) (0.100) (0.099)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 3,983 2,863 3,983 2,863 3,983 2,863

Adj. R2 0.959 0.940 0.895 0.847 0.967 0.943

Within R2 0.007 0.000 0.005 0.001 0.003 0.001

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parentheses. (2) We use the Fisher’s permutation test to
determine the significance of observed differences in coefficient estimates between two groups. The number of bootstrap repetitions is 1000. P-values for the
group coefficients difference are reported in the square brackets. (3) The number of weeks at the low-intensity level equals the sum of the number of weeks in D0,
D1, and D2 drought. The number of weeks at the high-intensity level equals the sum of the number of weeks in D3 and D4 drought. (4) Singleton observations
are dropped iteratively to avoid biasing the standard errors. (5) *** p<0.01, ** p<0.05, * p<0.1.
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Table A7: Robustness Checks-Alternative Standard Errors

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

#Weeks at low-intensity level -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.004∗ -0.004∗ -0.004∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

#Weeks at high-intensity level -0.022∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.009∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗

(0.004) (0.006) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.004)

Constant 9.860∗∗∗ 9.860∗∗∗ 9.860∗∗∗ 2.258∗∗∗ 2.258∗∗∗ 2.258∗∗∗ 7.611∗∗∗ 7.611∗∗∗ 7.611∗∗∗

(0.077) (0.107) (0.101) (0.076) (0.064) (0.069) (0.072) (0.085) (0.072)

Crop × County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,985 6,985 6,985 6,985 6,985 6,985 6,985 6,985 6,985

Adj. R2 0.950 0.950 0.951 0.886 0.887 0.888 0.958 0.959 0.959

Within R2 0.004 0.004 0.004 0.002 0.002 0.002 0.003 0.003 0.003

Notes: (1) The standard errors are clustered at different levels across the columns. For columns 1, 3, and 5, the standard errors are clustered at the county
level. In columns 2, 4, and 7, they are clustered at the county × crop level. For columns 3, 6, and 9, robust standard errors are used. (3) The number of
weeks at the low-intensity level equals the sum of the number of weeks in D0, D1, and D2 drought. The number of weeks at the high-intensity level equals
the sum of the number of weeks in D3 and D4 drought. (4) Singleton observations are dropped iteratively to avoid biasing the standard errors. (5) ***
p<0.01, ** p<0.05, * p<0.1.
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Table A8: Robustness Checks-Instrumental Variable Design

Unweighted Weighted

(1) (2) (3) (4)
Fixed effects 2SLS Fixed effects 2SLS

#Weeks in D0–D4 (unweighted) -0.012*** -0.008*
(0.002) (0.004)

#Weeks in D0–D4 (weighted) -0.004*** -0.004*
(0.001) (0.002)

Crop FE Yes Yes Yes Yes

County FE Yes Yes Yes Yes

County-specific time trend Yes Yes Yes Yes

First-stage F-statistic 103.302 43.424

Hansen J statistic 0.2543 0.2469

Endogeneity test 0.3908 0.4051

Observations 6,985 6,988 6,985 6,988

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parenthe-
ses. (2) The number of weeks in D0 D4 (unweighted) is calculated by summing the five drought variables.
The number of weeks in D0 D4 (weighted) is calculated by summing the five drought variables after they
have been multiplied by a factor corresponding to severity (i.e., weeks in D0 are identity, and weeks in D4
are multiplied by 5). Note that the number of weeks in different drought intensity levels is all weighted by
agricultural areas. (3) In the fixed-effects models, singleton observations are dropped iteratively to avoid
biasing the standard errors. (4) *** p<0.01, ** p<0.05, * p<0.1.
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Table A9: Production Losses from Drought Shocks: High Irrigation versus Standard Irrigation

Ln(output) Ln(yield) Ln(harvested acres)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
High-irrigated Standard-irrigated Diff-test High-irrigated Standard-irrigated Diff-test High-irrigated Standard-irrigated Diff-test

Weeks at low-intensity level -0.011∗∗∗ -0.083∗∗∗ 0.072 -0.004∗ -0.060∗∗ 0.056 -0.007∗∗ -0.022 0.015
(0.002) (0.011) [0.000] (0.002) (0.021) [0.000] (0.002) (0.023) [0.000]

Weeks at high-intensity level -0.023∗∗∗ -0.067∗∗ 0.044 -0.009∗∗ -0.063∗∗∗ 0.054 -0.014∗∗∗ -0.001 -0.013
(0.003) (0.023) [0.000] (0.004) (0.011) [0.000] (0.003) (0.027) [0.479]

Constant 10.160∗∗∗ 9.012∗∗∗ 2.341∗∗∗ 2.875∗∗∗ 7.830∗∗∗ 6.088∗∗∗

(0.070) (0.282) (0.076) (0.489) (0.075) (0.629)

Crop × County FE Yes Yes Yes Yes Yes Yes

Crop × Year FE Yes Yes Yes Yes Yes Yes

County × Year FE Yes Yes Yes Yes Yes Yes

Observations 6,018 514 6,018 514 6,018 514

Adj. R2 0.950 0.858 0.886 0.721 0.959 0.902

Within R2 0.005 0.016 0.002 0.018 0.003 0.008

Notes: (1) Standard errors are clustered at the county level. Standard errors are reported in the parentheses. (2) We use the Fisher’s permutation test to determine the significance of observed differences
in coefficient estimates between two groups. The number of bootstrap repetitions is 1000. P-values for the group coefficients difference are reported in the square brackets. (3) The number of weeks at the
low-intensity level equals the sum of the number of weeks in D0, D1, and D2 drought. The number of weeks at the high-intensity level equals the sum of the number of weeks in D3 and D4 drought. (4)
Singleton observations are dropped iteratively to avoid biasing the standard errors. (5) *** p<0.01, ** p<0.05, * p<0.1.
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Figure A1: Total Number of Drought Weeks at Extreme and Exceptional Drought Status
from 2000 to 2019

Notes: Based on USDM data, this figure illustrates the total number of weeks that areas experienced
extreme drought (D3) or exceptional drought (D4) from 2000 to 2019. Areas with no drought weeks
exceeding D3 status are marked as missing. Source: Leeper et al. (2022).
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Figure A2: The Revenue Losses for Each Produce for an Additional Week of Drought

Notes: This figure illustrates the estimated revenue losses for each fruit and vegetable resulting from an
additional week of drought, compared to no drought at all. Panel A represents the effects of low-intensity
drought, while Panel B reflects high-intensity drought. The highlighted crops are those with high market
values, while the remaining crops, shown in grey, are included for comparison.

63


	Introduction
	Background
	Drought Definition and Indices
	The U.S. Drought Monitor

	Conceptual Model
	Data Description
	USDM Data
	Data on Agriculture
	Irrigation Data
	Weather Data

	Empirical Framework
	Main Specification
	Decomposed Specification
	Treatment Heterogeneity

	Main Results
	Drought Impacts on Production and Its Components
	Heterogeneity Analysis
	Robustness Checks

	Irrigation Adaptation
	Discussion and Conclusion
	Discussion
	Conclusion

	Reference

